Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Dirk Göbbels and Mathias S. Wickleder*

Institut für Anorganische Chemie, Universität zu Köln, Greinstraße 6, D-50939 Köln, Germany

Correspondence e-mail:
mathias.wickleder@uni-koeln.de

Key indicators

Single-crystal X-ray study
$T=170 \mathrm{~K}$
Mean $\sigma(\mathrm{Cl}-\mathrm{O})=0.005 \AA$
R factor $=0.020$
$w R$ factor $=0.043$
Data-to-parameter ratio $=16.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Redetermination of mercury(II) hydroxide chlorate(V)

$\mathrm{Hg}(\mathrm{OH}) \mathrm{ClO}_{3}$ is built up from infinite zigzag $\left[\mathrm{Hg}(\mathrm{OH})_{2 / 2}\right]^{+}$ chains along [001] and $\left[\mathrm{ClO}_{3}\right]^{-}$ions. These chains are connected via weak $\mathrm{Hg}-\mathrm{O}$ interactions to O atoms of the $\left[\mathrm{ClO}_{3}\right]^{-}$ions, leading to layers parallel to (010). $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are present between these layers.

Comment

$\mathrm{Hg}(\mathrm{OH}) \mathrm{ClO}_{3}$ (Weiss et al., 1960), whose structure is redetermined here with considerably greater precision and with the H atom located, is isotypic with $\mathrm{Hg}(\mathrm{OH}) \mathrm{BrO}_{3}$ (Björnlund, 1971), but different from other basic $\mathrm{Hg}(\mathrm{OH}) X$ compounds, such as $\mathrm{Hg}(\mathrm{OH}) \mathrm{NO}_{3}$ (Ribar et al., 1971; Matkovic et al., 1974) or $\mathrm{Hg}(\mathrm{OH}) \mathrm{F}$ (Grdenic \& Sikirica, 1973; Stalhandske, 1979; Nozik et al., 1979). The structure of $\mathrm{Hg}(\mathrm{OH}) \mathrm{ClO}_{3}$ contains infinite zigzag $\left[\mathrm{Hg}(\mathrm{OH})_{2 / 2}\right]^{+}$chains along the [001] direction (Fig. 1). The distances $[\mathrm{Hg}-\mathrm{O}=2.051$ (2) \AA A and angles $\left[(\mathrm{H}) \mathrm{O}-\mathrm{Hg}-\mathrm{O}(\mathrm{H})=177.9(2)^{\circ}\right.$ and $\mathrm{Hg}-(\mathrm{OH})-\mathrm{Hg}=$ $122.6(2)^{\circ}$] in the chains are comparable with those in $\mathrm{Hg}_{2}(\mathrm{OH})\left[\mathrm{BF}_{4}\right]$ (Meyer \& Göbbels, 2003) and $\left(\mathrm{Hg}_{2}\right) \mathrm{Hg}(\mathrm{OH})_{2}\left[\mathrm{ClO}_{4}\right]_{2}$ (Wickleder, 2002). These chains are further connected via weak $\mathrm{Hg}-\mathrm{O}$ bonds [2.733 (3) and $2.763(3) \AA$ A to O atoms of the $\left[\mathrm{ClO}_{3}\right]^{-}$ions, forming layers that are parallel to (010). Taking these weak contacts into account, the coordination number of the mercury ion is ' $2+4$ '. The stacking direction of the layers is [010]. The layers are connected by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Steiner, 2002), with a 2.796 (6) $\AA(\mathrm{O}) \mathrm{H} \cdots \mathrm{O}$ distance and a $164(3)^{\circ} \mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ angle. The $\left[\mathrm{ClO}_{3}\right]^{-}$ion exhibits the typical pyramidal shape

Figure 1
Projection of $\mathrm{Hg}(\mathrm{OH}) \mathrm{ClO}_{3}$ along the a axis. The dashed lines show the weak $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between the layers. Displacement ellipsoids are drawn at the 90% probability level.

Received 12 January 2004 Accepted 2 February 2004 Online 14 February 2004
due to the lone electron pair on the Cl atom. The distances [1.486 (4) and $1.499(5) \AA$ A and angles [104.8 (2) and $\left.107.9(3)^{\circ}\right]$ within the $\left[\mathrm{ClO}_{3}\right]^{-}$ion are similar to those in oxochlorates(V) $M\left[\mathrm{ClO}_{3}\right]_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, with $M=\mathrm{Ba}$ or Pb (Lutz et al., 1985).

The site symmetries are Hg 2 , and $\mathrm{O} 1, \mathrm{H}, \mathrm{Cl} 1$ and O 11 m .

Experimental

Red HgO was dissolved with heating in 10 ml of $10 \% \mathrm{HClO}_{3}$ until a saturated solution was obtained. Colourless rod-shaped crystals were obtained upon cooling and filtration. These crystals were handled under air and an appropriate specimen was sealed in a glass capillary for the X-ray investigation.

Crystal data
$\mathrm{Hg}(\mathrm{OH}) \mathrm{ClO}_{3}$
$M_{r}=301.05$
Orthorhombic, Pbcm
$a=4.6375$ (6) \AA
$b=11.4064$ (19) \AA
$c=7.1965$ (11) \AA
$V=380.67(10) \AA^{3}$
$Z=4$
$D_{x}=5.253 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Stoe IPDS-II diffractometer ω scans
Absorption correction: numerical (X-SHAPE; Stoe \& Cie, 1999)
$T_{\text {min }}=0.012, T_{\text {max }}=0.116$
9295 measured reflections
592 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$
$w R\left(F^{2}\right)=0.043$
$S=0.97$
592 reflections
37 parameters
All H -atom parameters refined

Mo $K \alpha$ radiation
Cell parameters from 2000 reflections
$\theta=1.8-29.6^{\circ}$
$\mu=40.99 \mathrm{~mm}^{-1}$
$T=170$ (2) K
Rod, colourless
$0.13 \times 0.07 \times 0.02 \mathrm{~mm}$

> 457 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.100$
> $\theta_{\max }=30.0^{\circ}$
> $h=-6 \rightarrow 6$
> $k=-16 \rightarrow 16$
> $l=-10 \rightarrow 10$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0208 P)^{2}\right]$
\quad where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.006$
$\Delta \rho_{\max }=2.03$ e \AA^{-3}
$\Delta \rho_{\min }=-1.21 \mathrm{e}^{-3} \AA^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: $0.0265(9)$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Hg} 1-\mathrm{O} 1^{\mathrm{i}}$	$2.051(2)$	$\mathrm{Cl} 1-\mathrm{O} 12^{\mathrm{iii}}$	$1.486(4)$
$\mathrm{O} 1-\mathrm{H} 1$	$0.92(8)$	$\mathrm{Cl} 1-\mathrm{O} 11$	$1.499(5)$
$\mathrm{Cl} 1-\mathrm{O} 12^{\mathrm{ii}}$	$1.486(4)$		
$\mathrm{O1}^{\mathrm{i}}-\mathrm{Hg} 1-\mathrm{O} 1$	$177.9(2)$	$\mathrm{O}_{1} 2^{\mathrm{ii}}-\mathrm{Cl} 1-\mathrm{O} 12^{\mathrm{iii}}$	$107.9(3)$
$\mathrm{Hg}^{\text {iv }}-\mathrm{O} 1-\mathrm{Hg} 1$	$122.6(2)$	$\mathrm{O}_{1} 2^{\mathrm{ii}}-\mathrm{Cl} 1-\mathrm{O} 11$	$104.81(18)$
$\mathrm{Hg}^{\text {iv }}-\mathrm{O} 1-\mathrm{H} 1$	$112.8(15)$	$\mathrm{O} 12^{\mathrm{iii}}-\mathrm{Cl} 1-\mathrm{O} 11$	$104.81(18)$
Symmetry codes: (i) $x, \frac{1}{2}-y, z-\frac{1}{2}$; (ii) $1+x, y, z ;$ (iii) $1+x, y, \frac{1}{2}-z ;$ (iv) $x, y, \frac{1}{2}-z$.			

The maximum and minimum electron-density residuals are located 0.93 and $0.80 \AA$, respectively, from Hg 1 .

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: $X-A R E A$; data reduction: X-RED32 (Stoe \& Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97.

References

Björnlund, G. (1971). Acta Chem. Scand. 25, 1645-1654.
Brandenburg, K. (2001). DIAMOND. Version 2.1e. Crystal Impact GbR, Bonn, Germany.
Grdenic, D. \& Sikirica, M. (1973). Inorg. Chem. 12, 544-546.
Lutz, H. D., Alici, E. \& Buchmeier, W. (1985). Z. Anorg. Allg. Chem. 535, 3138.

Matkovic, B., Ribar, B., Prelesnik, B. \& Herak, R. (1974). Inorg. Chem. 13, 3006-3008.
Meyer, G. \& Göbbels, D. (2003). Z. Anorg. Allg. Chem. 629, 933-935.
Nozik, Yu. Z., Fykin, L. E., Bukin, V. I. \& Laptasch, N. M. (1979). Koord. Khim. 5, 276-278.
Ribar, B., Matkovic, B., Sljukic, M. \& Gabela, F. (1971). Z. Kristallogr. 134, 311-318.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stalhandske, C. (1979). Acta Cryst. B35, 949-951.
Steiner, T. (2002). Angew. Chem. 114, 50-80.
Stoe \& Cie (1999). X-SHAPE. Version 1.06. Stoe and Cie, Darmstadt, Germany.
Stoe \& Cie (2001). X-AREA (Version 1.15) and X-RED32 (Version 1.22). Stoe \& Cie, Darmstadt, Germany.
Weiss, A., Lyng, S. \& Weiss, A. (1960). Z. Naturforsch. Teil B, 15, 678.
Wickleder, M. S. (2002). Z. Anorg. Allg. Chem. 628, 1459-1460.

